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ne of the challenges 
of waiting for one’s 

passenger after an HPS 
committee meeting at 
Pershore College is the 
well-known hazard of the 
specialist horticultural 
library. On one such 
occasion, random snooping 
around the books led me 
to several references to the 
Fibonacci number series 
and its occurrence in the 
structures of some plants. 
The most common example, 
quoted widely, is the pair 
of spirals seen in the ‘face’ 
or disc florets of Helianthus 
annuus (fig. 1): it’s easy 
to see one set spiralling 
in from the edge in a 
clockwise fashion, the other 
anti-clockwise.  The books 
usually invite you to count 
the number of spirals of 
each set and be duly amazed 
that these turn out to be 
adjacent numbers (21 & 34) 
in the Fibonacci series (the 
series begins 1, 2, 3, 5, 8, 13, 
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21, 34 – we’ll come back to 
this later). 
     Do the plants ‘know’ this 
series? Do they really ‘know’ 
some mathematics? And 
what is more, is there some 
hidden advantage in having 
such attractive features in 
one’s face? There is no doubt 
that the spirals add great 
beauty to plant morphology 
as far as we are concerned, 
but how do the spirals arise 
– is there some underlying 
evolutionary benefit, and is 
it something genetic or is it 
simply physics?
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Fibonacci and his ‘series’
     The man we know 
as Fibonacci was more 
generally known in his day 
as Leonardo da Pisa (ca. 
1170–1250). He was an 
outstanding mathematician 
who was involved in 
introducing algebra to 
Europe. Leonardo’s father, 
Sr. Bonacci, was also 
famous, so Leonardo junior 
often signed himself ‘filius 
Bonacci’ or simply fi-
Bonacci (son of Bonacci). 

Fig. 1  Helianthus annuus 

Fig. 2  Bellis perennis Fig. 3  Leucanthemella serotina
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drawn from the flowering 
plants, but we don’t have 
far to go to find spirals in 
the arrangement of the 
scales in conifers. Peer into 
botany text books and there 
the spirals are again under 
the heading ‘phylotaxis’, 
which we’ll come to later.
     Try googling ‘Fibonacci’ 
and be amazed, and be 
wary! There are claims that 
the series is revealed in the 
dimensions of the famous 
pyramids in Egypt and in 
some ancient Greek temples. 
There are books on using 
the Fibonacci ratios to play 
the stock market.  One of 
the strangest is an attempt 
to link the revolutionary 
periods of planets around 
the sun to plant phylotaxis. 
The field is littered with 
‘selective choice of 
evidence’ and a preference 
for obscure explanations 
over simple ones. 

Back to Plants
     Once one is aware of 
spirals, they are seen in 
many species. For example, 

     Fibonacci’s series starts 
with ‘0’, then ‘1’, and 
continues with the rule 
(an algorithm) that the 
next number is always the 
sum of the previous two 
numbers; check it out with 
the values above.  It looks 
harmless enough, but it 
has spawned hundreds of 
serious mathematical books 
and papers, a literature of 
imaginative tosh, and of 
course it has expression 
in the plant world.  Look 
out for both spirals in the 
simple daisy, Bellis perennis 
(fig. 2), with 13 & 21 spirals, 
and in the less simple 
Leucanthemella serotina, 
(fig. 3), with 21 & 34 spirals.
     Many authors on 
the subject refer to the 
‘numbers of petals’ in a 
flower, claimed to ‘always’ 
be a Fibonacci number; 
‘often’ would be more 
accurate, as 3, 5, 8, etc. are 
indeed common but, as we 
know, the crucifers with 
their 4 petals don’t seem 
to have heard of Fibonacci! 
These examples have been 

look at the florets in 
Kniphofia rooperi (fig. 4) 
with numbers 8/13; the 
spiky bosses of Dipsacus 
laciniatus (fig. 5) numbers 
5/8; the spheroidal bosses of 
Echinacaea purpurea (fig. 6); 
and even the compound 
residues of the flowers in 
pineapples (fig. 7). (Note 
that decorative stone 
pineapples (fig. 8) do not 
sport Fibonacci spirals as 
they have an equal number 
of bumps and are quite 
symmetrical.) 
     And it is not just 
the flowering parts: 
not surprisingly, the 
arrangement of the seed 
maintains this spirally 
phenomenon, such as 
Geum urbanum (fig. 9).  
Sometimes the spirals are 
not easy to see, for example 
the leaf arrangement 
in Euphorbia characias 
confuses the eye (fig. 10), 
but look at the euphorbia 
leaf scales and there they 
are, spirals in two directions 
and with different slopes 
(fig. 11)!  
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Fig. 4  Kniphofia rooperi Fig. 5  Dipsacus laciniatus Fig. 6  Echinacaea purpurea 
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This spiralling round a stem 
directs us to the botany 
books and to the term “spiral 
phylotaxis”.  Phylotaxis 
is the way leaves are 
arranged along stems; in this 
euphorbia the leaves seem 
to spiral around as we go up 
the stem. Taking any leaf as 
the starting point, we count 
the number of new leaf axils 
we pass until we get to a 
leaf axil which is exactly 
above the starting point 
(easier said than done). We 
also count the number of 
‘complete turns around the 
stem’ to get there. Fig. 12 
makes this clearer: we pass 
8 axils and use 3 turns, so 
the phylotaxis is called 3:8 
(again Fibonacci numbers). 
     The interpretation 
of these spirals was a 
challenge which left even 
Charles Darwin baffled. 
Some writers refer to 
them as ‘Golden Spirals’ 
or even ‘spira mirabilis’ 
(miracle spirals). But 
are spirals really such an 
unexpected phenomenon? 
Moving briefly away from 

horticulture we come to 
our friend the snail with 
the spirals in his shell (does 
he know maths as well?) 
and fossils – fig. 13 shows 
fossilised roots or stigmaria 
(found in coal measures laid 
down about 300 million 
years ago); look closely and 
there are the spirals again. 
Spirals are more common 
than we thought and they 
have been around for a very 
long time.  

Spirals and conifers
     The fossil in fig. 13 
suggests that we might do 
well by looking into the 
past; for plants we can do 
this by looking at the family 
coniferales, a family which 
displays in the fossil record 
evidence of spirals in cones 
and trunks. It is relevant to 
recall that conifers were a 
dominant family millions 
of years before our beloved 
flowering plants; extant 
conifers such as the Korean 
fir, Abies koreana (fig. 14), 
and the noble fir, A. procera 
(fig. 15), display spiralling 

in the vast majority of their 
cones. Usually one spiral 
is easy to see and on close 
inspection there is another 
at a different pitch and 
going the other way round. 
And yes, the numbers of 
spirals in each direction are 
again adjacent Fibonacci 
numbers, in this case 5:8 for 
A. procera and 8:13 for A. 
koreana.  However, although 
the conifer spirals are often 
thought similar to the spirals 
on the sunflower disc, there 
is an important difference: 
even though the basal part 
looks confused, it is clear 
that in cones the number 
of each spiral remains the 
same as growth progresses, 
but the spirals are more 
like distorted helices. The 
needleless spikes in fig. 16 
show that the helical spirals 
originate at the central spike 
of the cone and, further, 
that at least in conifers the 
direction of spirals of the 
same pitch can be different 
on two cones from the same 
plant. Look closely at fig. 14 
to see this here as well. 
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Fig. 7  Pineapple Fig. 8  Stone pineapple Fig. 9  Geum urbanum seeds 
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Figs 10, 11 & 12  Euphorbia 

Fig. 13  Fossilised roots or stigmaria Fig. 14  Abies koreana Fig. 15  Abies procera 

     We can go further with 
conifers by looking at 
the Monkey Puzzle tree, 
Araucaria, (fig. 17). This 
shows the spiralling of 
sharp leaflets round the 
trunk and the numbers 
of each are still adjacent 
Fibonacci numbers, 13:21 
(sometimes 15:24!), but 
closer inspection reveals a 
third spiral. The spiralling 
in conifers clearly predates 
our relatively recent 
flowering plants, so how 

do we link twirling around 
a trunk to the display in 
sunflowers and asters? 
We start by looking down 
the stem of a growing tip 
of the araucaria (fig. 18). 
A few painful hours with 
gloves and pliers applied to 
stripping away the leaflets 
in reverse order of growth 
enabled me to number 
each leaflet, the lowest 
number for the youngest 
leaf. The starting point is 
arbitrary as the smaller 

leaflets are too small to deal 
with, but what is revealed 
gives an approximate fit to 
theoretical expectations 
that the leaflets in the 
same sector will have the 
Fibonacci relationship: 
so starting from leaflet 
marked 0, we get numbers 
3, 5, 8, 13 and 21 radiating 
outwards. An arbitrary 
start at say bud 3 radiates 
out to values of ‘3 plus the 
Fibonacci numbers’ i.e. 6, 8, 
11 and 16. 
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1 The ancient Greeks reasoned as follows. Take a stick of length c; can we break it into two parts such that the ratio of the orig-
inal stick to the larger broken piece b is equal to the ratio of the piece b to the broken piece a? Remembering that c is actually 
a-plus-b, we write this in algebra as: (a+b)/b  =  b/a. The value for which this is true is 1.61803, or ɸ. Try writing out a Fibonacci 
sequence starting with a & b!

2 That is 360° multiplied by 0.61803 to get 222.4908 ° (we ignore the 1 because this is just one full circle.) Remember that this is 
the same thing as 137.509° but turning the other way! About 138° works well enough for our plants.
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Fig. 16  Helical spirals originate at 
the central spike of the cone 

Fig. 17  Monkey Puzzle tree, 
Araucaria Fig. 18  A growing tip of Araucaria 

The text books on the 
subject seem to get a better 
fit but perhaps my tree has 
not read the books! 

What plants ‘do not want’ 
     We’ll look at how 
well sunflowers and 
company behave in the 
light of theory, but first 
we need to ask what the 
plant does not want! All 
plants construct the vast 
majority of their constituent 
macro-molecules from the 
extremely small molecule 
carbon dioxide via long-
winded biochemistry, a 
consequence of which 
is evolutionary selection 
favouring high efficiency 
in all things. Thus plants 
‘do not like’ waste of space 
or resources. Buds or seed 

which ‘sit in the nick’ are 
more efficient than square 
arrangements, as are space-
filling spirals rather than 
space-wasting cart-wheel 
spokes.

Fibonacci and ɸ
     Ancient Greek 
mathematicians were 
very interested in ratios. 
We all know about their 
discovery of the ratio π for 
circles and spheres; they 
also discovered the ratio 
ɸ (pronounced “fie”). ɸ 
is the number obtained 
by dividing any larger 
Fibonacci number by its 
preceding partner1 and has 
the value 1.61803... and like 
the decimal expression of π, 
it never comes to the end of 
the decimals. 

ɸ crops up all over 
geometry in most surprising 
places. We’re going to use 
it in a simple geometrical 
model and see how the 
result compares with our 
actual observations of 
plants. The central question 
is why are there Fibonacci 
spirals? 

The model system using phi
     We start with the 
primordia or proto-buds 
being produced sequentially 
by the meristems and 
characterised by the rule 
‘grow a bit and turn a 
bit’.  Here the ‘turn a bit’ 
is the decimal part of ɸ 
as a fraction of a circle2 
(that is about 138°, the 
‘golden angle’).  As more 
buds are produced, the 
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Figs 19, 20, 21 & 22  ‘The golden angle’ (about 138°) – the challenge is 
our perception 

previous buds simply move 
outwards along a radius as 
the primordia develop. The 
value of the golden angle 
means that each successive 
bud is located about a third 
of a circle away from its 
predecessor. The first 90 or 
so buds are shown in fig. 19.  
At first glance there is not 
much order (I have slightly 
lengthened the radial part 
to make it clearer). There 
is a clue when we notice 
that for the buds nearer to 
the edge, the spirals can be 
made out (as we find in the 
plants themselves).     
     Drawing in the spirals 
reveals one set of 21, and 
another of 13 members 
(fig. 20). 

The lower numbered spirals 
are still there, we just 
don’t see them as easily. I 
have marked them in figs 
21 & 22, still Fibonacci 
numbers, 8 & 5. The 
challenge here is the way 
we see spatial relationships! 
We are concerned with 
near neighbours in the 
disc florets, not near in the 
sense of near-bud-numbers. 
Some neighbours are almost 
shoulder to shoulder, others 
are almost (but not quite) 
vertically aligned. You can 
see that the higher the 
number of spirals the more 
vertical the spiral lines are. 
In fig. 21 I have chosen a 
random bud, in this case bud 
number 41, shown in the 
upper left section along with 
its eight closest neighbours 
and their bud numbers.  
Remember that these are 
the eight neighbours as we 
see them, look closely at 
the differences in the bud 
numbers between no. 41 
and the others, and what 
we get are our old friends 
the Fibonacci numbers. And 

also take note that all of the 
spirals go through no. 41, not 
just the two most obvious 
ones. The spirals arise as a 
direct consequence of the 
properties of ɸ (which we 
used to provide the angle 
at which primordia are 
produced) and the way our 
brains see things. Another 
way of looking at this, 
(which boils down to the 
same thing) is that the set 
of say 5 spirals is simply the 
result of joining up every 
fifth bud number; the set 
of 8 spirals is the result of 
joining up every eighth bud 
number; and so on.

Theory and reality
     Horticulture is a field 
in which practice and 
observation trump theory. 
There are many cases in 
which observation does 
not fit Fibonacci numbers, 
or perhaps we should say 
there are many cases for 
which the Fibonacci ideas 
don’t fit reality. It does not 
detract from the Fibonacci 
interpretation to find that 
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Derek Cooper read chemistry at UMIST followed by six years research at the universities of 
Manchester, Cornell and Cambridge and teaching at Staffordshire University. His interest in 
horticulture came on the coat-tails of his wife Pauline’s wider & deeper knowledge, but the 
scientific habit of a lifetime – asking ‘why and how?’ – always surfaces sooner or later.
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Fig. 23  Cells in the meristem 
divide rapidly to produce 
buds (primordia) behind the 
advancing tip

whole families, for example 
the crucifers, seem oblivious 
of this system of magnificent 
mathematics. Nor do the 
casual observations of 
non-compliance on the 
same plant challenge this; 
for example, teasels from 
our own borders also show 
26:31 and 26:41 as well as 
the ‘predicted’ values 21:34. 
Playing around with the 
computer model shows that 
even changing the golden 
angle a bit doesn’t necessarily 
lead to the collapse of the 
spirals. As usual, botany 
seems to be content with 
being approximately 
consistent!
     So we conclude that 
evolution has selected for a 
turn-a-bit angle of about 138° 
leading to optimisation of 
resources and a geometrically 
efficient way of dealing 
with curved surfaces.  The 
famous spirals we see are a 
spin off from the use of ɸ; 
the spirals in themselves are 
unimportant to the plants, 
although to us they remain 
things of beauty.

Is it genes or is it physics?
     A fair question to ask 
is whether the spirals 
(whether they be true 
logarithmic spirals, distorted 
helices, or whatever) are the 

result of purely physical 
forces, and the efficient use 
of space and materials. I 
tried jiggling 200 pennies 
around on a flat surface, 
resulting in a few curvy 
lines but nothing spiral 
like the plants. Perhaps a 
better model is jiggling peas 
around within a curved 
surface like a mixing bowl: 
several spirals appeared but 
not enough to claim the 
cause is physics alone.     
     So how do the plants 
do it? Current botanical 
conjecture goes something 
like this. The growing tip 
of the stem has a multi-
cellular tissue called the 
meristem; cells are dividing 
rapidly to produce buds 
called primordia located 
just behind the advancing 
tip (shown schematically in 
fig. 23).  There is thought to 
be a time interval (called a 
plastochrone) between the 
production of successive 
primordia, and space 
constraints and genetic 
features together lead to 
the expression of successive 
primordia at about the 
golden angle of 138°– a sort 
of pulsating production of 
the primordia. And how 
does the plastochrone 
operate? Again we are 
reliant on conjecture, that 

is we believe that the genes 
can ‘switch on ‘and ‘switch 
off’ the production of both 
inhibitor and promoter 
hormones which are thought 
to have different diffusion 
rates within the cellular 
fluids which produces the 
pulses. This is not as far-
fetched as it might sound; 
there are some pulsating/
oscillating systems of this 
sort with totally inorganic 
components (known as 
Belousov-Zhabotinsky 
reactions). Carried into cell 
biology we are back in the 
land of grow-a-bit-turn-a-bit. 
     So are Fibonacci’s spirals 
the result of genes or of 
physics? It seems to be a bit 
of both.


